139. Word Break

Problem
Given a non-empty string s and a dictionary wordDict containing a list of non-empty words, determine if s can be segmented into a space-separated sequence of one or more dictionary words.
Example
- Input: s = "leetcode", wordDict = ["leet", "code"]
Output: true (Return true because "leetcode" can be segmented as "leet code".)
Note
- The same word in the dictionary may be reused multiple times in the segmentation.
- You may assume the dictionary does not contain duplicate words.
Solution
Recursion with memoization
/*
* time: O(n^2), space: O(n)
*/
public boolean wordBreak(String s, List<String> wordDict) {
return word_Break(s, new HashSet(wordDict), 0, new Boolean[s.length()]);
}
public boolean word_Break(String s, Set<String> wordDict, int start, Boolean[] memo) {
if (start == s.length()) {
return true;
}
if (memo[start] != null) {
return memo[start];
}
for (int end = start + 1; end <= s.length(); end++) {
if (wordDict.contains(s.substring(start, end)) && word_Break(s, wordDict, end, memo)) {
return memo[start] = true;
}
}
return memo[start] = false;
}
Breadth-First-Search
/*
* time: O(n^2), space: O(n)
*/
public boolean wordBreak(String s, List<String> wordDict) {
Set<String> wordDictSet=new HashSet(wordDict);
Queue<Integer> queue = new LinkedList<>();
int[] visited = new int[s.length()];
queue.add(0);
while (!queue.isEmpty()) {
int start = queue.remove();
if (visited[start] == 0) {
for (int end = start + 1; end <= s.length(); end++) {
if (wordDictSet.contains(s.substring(start, end))) {
queue.add(end);
if (end == s.length()) {
return true;
}
}
}
visited[start] = 1;
}
}
return false;
}
Dynamic Programming
/*
* time: O(n^2), space: O(n)
*/
public boolean wordBreak(String s, List<String> wordDict) {
Set<String> dict = new HashSet<>(wordDict);
boolean[] dp = new boolean[s.length() + 1];
dp[0] = true;
for(int i = 1; i <= s.length(); i++) {
for(int j = 0; j < i; j++) {
if(dp[j] && dict.contains(s.substring(j, i))) dp[i] = true;
}
}
return dp[s.length()];
}